Optical Networks In The Sky

John Schuster – SVP of Engineering

LeoSat's Plan

- Goal
 - The lowest latency, most secure, gigabit bandwidth data network providing connectivity anywhere on Earth
- Feature Set
 - Point-to-Point or Point-to-Multi-Point without touching the ground
 - Security
 - Performance lowest latency possible
 - Fiber-like full-duplex connectivity and high bandwidth
- Target Markets
 - Enterprise
 - Government Non-Military
 - Government Military
 - Cellular Backhaul
 - Maritime
 - Oil & Gas
 - Media
 - Arctic Connectivity

The LeoSat Constellation

61 48

- 84 satellites
- 6 orbital planes
 - 14 satellites per plane
- Polar Orbit at 1,400 km altitude
- 24+ Ka-band spot beams per satellite

W

 Four ~20+ Gbps optical inter-satellite links (OISL)

Copyright 2015, LeoSat, Inc

LE

End-to-End Earth Station Connectivity: RF + OISLs

- A customer's data enters the mesh typology network via one satellite's Ka-band spot beams
- It is routed through the satellite mesh typology via the OISLs
- The data is returned to the Earth via the last satellite's Ka-band spot beams
- The customer's data only touches the ground at the customer's ground terminals
- FASTER and more SECURE than fiber

A LeoSat Satellite – Artist's Concept

Optical Inter-Satellite Links (OISLs)

Why Lasercom

- Very SWaP (size, weight, and power) efficient for a given data rate
 - Apertures of ~7 10 cm in diameter
 - At 5,500km = ~55m spot size
- No RF spectrum/no interference
- Very high data rates supported
 - >10 Gbps
- Lasercom in space is easier than on the ground
 - No weather
 - No scintillation
 - Our satellites are moving, but the motion is highly predictable

Challenges

- Operations with sun in the field of view
- Internal mechanical/optical alignment over constantly changing solar exposure
- Satellite platform deflection due to solar/thermal loading
 - Alignment between terminals
 - Can be compensated/predicted over time and data gathering
- Radiation darkening of fiber in amplifiers
- Mechanical pointing and tracking system lifetime with 24/7 operations
- Optics contamination
 - Direction of travel facing optical system

Cross Seam Communications

At the Seam, satellites moving in opposite N/S directions

- Links constantly dropping and re-acquiring
- High angular tracking rates
- If not crossed, must be routed "around" – increases latency

Opportunities?

- 1. Combining/Mining pointing and tracking data
 - Each LeoSat spacecraft has 4 OISL terminals
 - Each terminal is constantly monitoring its line of sight
 - Microradian resolution at kHz sampling rates
 - Can we combine the pointing and tracking data across terminals and satellites to reduce acquisition time across the seam?
 - What else can be mined from that data?
 - Exceptionally high resolution Position, Navigation and Tracking (PNT) applications?
- 2. Use the LeoSat constellation to downlink data from EO satellites
 - EO satellites could upload their data to LeoSat using RF Ka-band or OISLs
 - Real-time downlinking of data from/to anywhere in the world

Thank You

10